PICMG

August 27, 2024

DMTF Publishes PICMG IoT.x IP Submission into Redfish API Specification

PICMG

  • PICMG IoT.1 interoperable data modeling capabilities have been included in the latest release of the DMTF Redfish specification.
  • Ongoing work will extend the Redfish job model to support factory orchestration and management via cloud-based platforms like AWS.
  • A reference Redfish server based on PICMG IoT.x is being developed on GitHub to demonstrate the potential of plug-and-play Industry 4.0 use cases.

WAKEFIELD, MA. PICMG, the consortium driving open standards for modular, scalable computing, and DMTF, have announced that an IP submission containing the PICMG IoT.x firmware specification was accepted and included in the most recent Work in Progress phase of the Redfish® standard. The extensions to Redfish will streamline the creation of plug-and-play Industry 4.0 systems by connecting interoperable data models on IoT.x-enabled endpoints to software-defined converged infrastructure via the Redfish API.

Redfish is an IT industry standard commonly used for data collection and device management in equipment such as data center fans and coolant pumps. Since 2018, PICMG and DMTF have worked collaboratively to extend the capabilities of Redfish to automation and factory equipment, enabling remote management and control of robotic motion platforms, contextualized sensing systems, and other advanced control endpoints.

The result of those efforts is PICMG IoT.1 and IoT.2, which add extensions to DMTF’s Redfish standard, now included in the latest publication.

“DMTF specifies protocols, data formats, and models for interoperable management on control plane infrastructure including edge systems,” said Jeff Hilland, DMTF president. “Since a lot of what we do is applicable to edge hardware, it makes sense to work with PICMG as part of our alliance partner program.”

Extending Data and Control Capabilities

The PICMG IoT.1 firmware specification defines a standard data model for sensor makers and systems integrators, while PICMG IoT.2 addresses the data model and network architecture requirements for the integration of larger sensor/effector networks.

Together, the two specifications accelerate the development and deployment of smart sensors in Industry 4.0 applications. Redfish extensions integrate these capabilities in a larger system of systems context while remaining fully compatible with the PICMG IoT.x specifications.

PICMG is also working on extending the Redfish job model to support cloud-based scheduling and orchestration of factory equipment. This will allow industrial operators to leverage powerful cloud platforms like AWS to manage jobs all the way to control endpoints on a factory floor.

“Imagine a modular factory where every component is interconnected and fully plug-and-play not just at the sensor and effector level, but across the entire assembly line,” said Doug Sandy, CTO of PICMG. “A factory where every piece of equipment has its own associated Redfish service, workloads, and processing could happen wherever they need to, while operators could manage and monitor everything through a top-down hierarchy of building, floor, and line controllers.”

“That’s what PICMG and DMTF ultimately want to support. And with our current work on Redfish, we’ve taken a big step in the right direction,” he added.

Building the Factory of the Future

PICMG’s IP submission recently entered DMTF’s Work in Progress phase and is slated for a projected full release in 2025. During the Work in Progress phase, the development community will have the opportunity to review and comment on the new content of the specification so changes can be incorporated prior to the next Redfish release.

PICMG and DMTF also currently have a team working on an example implementation of the interoperable data environment, expressed in the form of an open-source server. Accessible on the PICMG GitHub repository, new functionality is being added to the server each month with the goal of it becoming fully functional in time for the next Redfish specification release.

The PICMG extension is publicly available on the DMTF website at: www.dmtf.org/sites/default/files/PICMG_DMTF_Work_Register_v1.1.pdf.

Learn More

About DMTF

DMTF, an industry standards organization, creates open manageability specifications spanning diverse emerging and traditional IT infrastructures including cloud, virtualization, network, servers, and storage. Member companies and alliance partners worldwide collaborate on standards including RedfishSPDM, SMBIOSMCTPPLDM, and more to improve the interoperable management of information technologies. Nationally and internationally recognized by ANSI and ISO, DMTF standards enable a more integrated and cost-effective approach to management through interoperable solutions. Simultaneous development of Open Source and Open Standards is made possible by DMTF, which has the support, tools, and infrastructure for efficient development and collaboration. For a complete list of our standards and initiatives, visit the Standards and Technologies section of the DMTF website.

DMTF is led by a diverse board of directors from Broadcom Inc.; Cisco; Dell Technologies; Hewlett Packard Enterprise; Intel Corporation; Lenovo; Positivo Tecnologia S.A.; and Verizon.

About PICMG

Founded in 1994, PICMG is a not-for-profit 501(c) consortium of companies and organizations that collaboratively develop open standards for high-performance industrial, Industrial IoT, military & aerospace, telecommunications, test & measurement, medical, and general-purpose embedded computing applications. There are more than 150 member companies that specialize in a wide range of technical disciplines, including mechanical and thermal design, single board computer design, high-speed signaling design and analysis, networking expertise, backplane, and packaging design, power management, high availability software and comprehensive system management.

Key standards families developed by PICMG include COM-HPC, COM Express, CompactPCI, AdvancedTCA, MicroTCA, AdvancedMC, CompactPCI Serial, InterEdge, ModBlox7, SHB Express, IoT.x, and HPM (Hardware Platform Management).

For more information, visit https://www.picmg.org.

February 29, 2024

Decades of Contribution, Immeasurable Impact

COM ExpressCOM-HPCJess IsquithKontronPICMG

This year PICMG celebrates thirty years of developing open computing specifications. And despite three decades of open hardware specs that are used by thousands of companies and countless engineers worldwide, the organization is still largely an unknown—even in our own industry.

But from behind the scenes, PICMG is responsible for billions of dollars of business. It has reduced time to market in virtually every electronics-driven industry. It has empowered companies to innovate by adopting off-the-shelf technologies, giving them space to focus on their core competencies. It has built markets based on coopetition, where companies collaboratively develop open, interoperable specifications then go toe-to-toe once they are ratified.

Even less recognized are the individuals who donate hundreds if not thousands of hours to the creation of PICMG specifications. These engineers are rarely acknowledged for their contributions. They are truly unsung heroes, and PICMG specifications wouldn’t exist without them.

One of these unsung heroes is Stefan Milnor, who recently retired from his role as VP of Engineering at Kontron. In parallel, he stepped down as the long-time editor of COM Express and COM-HPC specifications. 

Stefan has been involved in PICMG since the beginnings of COM Express, which is undeniably the most successful computer-on-module in a billion-dollar COMs market. As editor, Stefan incorporated input from numerous technical subcommittees over the years and implemented it into specifications that have been adopted by thousands of organizations building embedded systems. It’s a difficult job that requires a rare mix of technical acumen and attention to detail, and his skill and efficiency will be missed by us all—including some who never knew he was the hand behind their downloaded spec.

Stefan has always been a very private individual. In fact, by the time we could reach out to him for comment he had already left. In some ways, it’s a fitting conclusion for someone who performed yeoman’s work for decades without reward. And although he probably isn’t reading this, his contributions to PICMG and the embedded computing industry deserve to be acknowledged.

Thank you, Stefan, for helping make PICMG what it is today: 30 years strong and counting.

— Jessica Isquith, President, PICMG

Admin Note: Contact Doug Sandy, PICMG CTO, at [email protected] to learn how you can get involved in PICMG’s technical working groups. Contact me, [email protected] if you are interested in joining PICMG or have any questions about our organization.

February 29, 2024

Members Only Series: Jens Hagemayer of Bielefeld University and the COM-HPC plus CXL Opportunity

COM-HPCOpen StandardsPICMGSlider

The Members Only interview series highlights leaders from within PICMG and throughout the open standards development community. We recognize their contributions and seek insight into their thought processes and strategies driving open technology-powered industries forward.

This issue we introduce Jens Hagemayer, a research associate at the Bielefeld University. Jens and his team have been intimately involved in the development of COM-HPC since its inception, championing the use of heterogeneous modules designed around FPGAs. Now they are investigating ways that Compute Express Link (CXL) specifications can take COM-HPC into new use cases.

PICMG: Can you describe your work outside of PICMG as well as the role you played in development of the COM-HPC specification? 

JENS: I am currently engaged in research at Bielefeld University, focusing on the development of heterogeneous and reconfigurable computing technologies for a wide range of applications. These include the Internet of Things (IoT), edge computing, cloud computing, and high-performance computing (HPC).

My involvement with the early stages of the COM-HPC specification centered on leading the development of the Platform Management Interface Specification and expanding the Embedded EEPROM Specification for COM-HPC. 

PICMG: You recently raised awareness about the CXL standard within the COM-HPC community. What is CXL and why is it relevant for PICMG COM-HPC developers and users?

JENS: CXL, or Compute Express Link, is a high-speed, high-capacity interconnect standard that facilitates efficient communication between CPUs, memory, and peripherals using the PCIe physical layer. Its support for cache coherency, disaggregation, and scalable architectures makes it a compelling choice for modular form factors like COM-HPC, driving its popularity among developers and users seeking advanced computing solutions.

PICMG: Why is CXL 3.1 significant in the context of COM-HPC? What use cases or capabilities will it drive in the COM-HPC ecosystem?

JENS: CXL introduces features that cater to the demanding requirements of cloud and high-performance computing systems. Its emphasis on scalable architectures, disaggregation, and cache coherency is particularly relevant for COM-HPC, offering the potential to revolutionize the way modular computing platforms are designed and utilized. 

The integration of CXL into COM-HPC could facilitate the development of more sophisticated computing solutions, enabling the seamless coupling of specialized accelerators and the establishment of cache-coherent multi-socket systems. These advancements promise to unlock new possibilities for COM-HPC applications, ranging from data-intensive analytics to AI and machine learning workloads, driving innovation in modular computing technologies.

PICMG: Given that CXL targets PCIe, has it been compatible with COM-HPC to date?

JENS: The relationship between CXL and COM-HPC is fundamentally influenced by CXL’s reliance on the PCIe physical layer for connectivity. This means that while direct compatibility between previous versions of CXL and COM-HPC has not been explicitly defined, the architectural underpinnings allow for potential integration. 

The absence of CXL in the current COM-HPC specification, coupled with the lack of support in existing modules, suggests that the integration of CXL represents a forward-looking opportunity for enhancing COM-HPC. Such integration is anticipated to require minimal modifications to the specification, paving the way for future advancements in modular computing.

PICMG: What does the COM-HPC community need to know about the CXL market or technical requirements to capitalize on the opportunity?

JENS: To fully leverage the potential that CXL brings to the COM-HPC community, it is crucial to understand the intricacies of CXL’s market dynamics and technical specifications. This involves a deep dive into the architecture of CXL, including its device types—such as Type 1 for I/O devices, Type 2 for cache-coherent devices, and Type 3 for memory expander devices. Additionally, understanding the topology options that CXL supports, including switch-based topologies for larger, more complex systems, can empower developers to design COM-HPC solutions that are both innovative and future-proof. 

Staying abreast of the evolving CXL specifications and market trends will enable the COM-HPC community to identify new opportunities for integration and application, ensuring that COM-HPC modules remain at the forefront of technological advancement.

PICMG: What are you and Bielefeld University doing with respect to CXL today?

JENS: We are working on integrating CXL within the RISC-V ecosystem, a venture that holds promising implications for the future of computing architectures. Our work focuses on the development of innovative bridge technologies that facilitate communication between the RISC-V Coherent Hub Interface (CHI) and CXL, using FPGA-based modules, which we refer to as microservers. 

This endeavor is not just about bridging two technical standards; it’s about creating a foundation for next-generation computing platforms that can seamlessly integrate diverse processing and memory resources. By developing these bridges, we aim to enable more efficient, scalable, and flexible computing architectures that can cater to the demanding requirements of modern applications, ranging from AI and machine learning to big data analytics.

PICMG: Where can interested parties go to find more information on CXL?

JENS: The CXL Consortium website serves as the primary repository of knowledge. This platform not only provides access to the official CXL specifications and technical documents, but also offers insights into the latest developments, industry adoption stories, and educational resources.

More Information:
• Compute Express Link: https://computeexpresslink.org
•*PICMG COM-HPC Overview: https://www.picmg.org/openstandards/com-hpc
•*PICMG Platform Management Interface Specification: https://www.picmg.org/product/com-hpc-platform-management-interface-specification