What’s New

March 2, 2022

PICMG Committee to Develop New Modular Box PC Open Specification

Industry NewsNewsPICMG

ModBlox7 introduces an open standard to proprietary multi-billion USD market

PICMG, a leading consortium for developing open embedded computing specifications, announces a technical subcommittee formed to create a new PICMG form factor specification named ModBlox7. This specification will transform the multi-billion dollar Box PC industry by introducing an open standard to what is currently a proprietary market. Box PCs are highly integrated computing solutions, but the lack of interoperability limits the ability for end users to achieve truly cost-effective and sustainable solutions.

The ModBlox7 specification will describe a compact and modular Box PC that is flexibly configurable and can be wall-mounted, snapped onto a DIN rail, or integrated into a 19” subrack. The height and depth are fixed; the width is variable in multiples of 7HP. The maximum length is 84HP. The modular Box PC designs will be very robust, support passive conductive cooling, and be used for demanding applications such as railway, avionics, mobile machines and autonomous mobility as well as machinery in discrete manufacturing and controls in critical process industry infrastructures. The result of the committee’s work will be a basic specification describing the housing mechanics, the modular functional units, and the electrical interconnection of the units. The standard will guarantee interoperability of units for manufacturers as well as interoperability for users of the Box PC, while combining the advantages of modular systems and highly integrated cost-sensitive Box PC solutions.

The open specification will contain the following requirements or specified functions:

  • Cost-efficient design with minimum mechanical effort. No additional backplane or heat sink will be required. Coplanar board-to-board connectors couple each unit to its neighbor and route defined I/O interfaces (PCIe and USB) to the next board. 
  • Modular, functionally encapsulated plug-in units in multiples of 7HP width pitch. Units form functional assemblies such as power supply, CPU, switch and I/O. Units can be multiples of 7HP, e.g., implement more interfaces or functionality in a single building block assembly.
  • This results in a wide range of device combinations in a modular design in increments of 7HP (21HP, 28HP, 42HP to 84HP), making it cost-efficient even in small quantities.
  • Each modular computing unit can host a stack of 1, 2, or 3 PCBs – depending on the complexity. Separation is typically made according to the front I/O and the power and communication requirements between the host unit and its expansion units.
  • Flexible mounting with minimal accessory components for wall, din-rail, and 19″ subrack installations.

“For industrial end users, the advantages of an Box PC open standard lie in the cost-effective design of the dedicated systems and the flexible interchangeability of components to tailor the platform for dedicated tasks. Manufacturers also benefit, as the interoperability between the units strengthens their core competence, and they do not have to develop each unit and its embedded components such as cables and mechanics themselves. For VARs and system integrators, the new ecosystem will provide faster configuration options with components from multiple vendors,” states Mathias Beer, chief product officer at Ci4Rail.

According to Markets and Markets, the global industrial PC market size is estimated to reach USD 6.1 billion by 2026 from USD 4.6 billion in 2021, growing at a CAGR of 5.8%. The market growth is fueled by increasing demand for industrial IoT, a steady shift towards digitalized manufacturing from traditional manufacturing, growing awareness for resource optimization in manufacturing industries, and stringent regulatory compliances.

The goal is to have the specification ratified by the end of 2022. The team has elected Bernd Kleeberg of EKF Elektronik as chairman of the committee. Manfred Schmitz of Ci4Rail is the technical editor, and Johann Klamer of ELTEC Elektronik acts as secretary.

This initiative has over 15 active member companies, including: ADLINK, Ci4Rail, EKF Elektronik, Elma Electronic, ELTEC Elektronik, Embeck, ept, General Micro Systems, HEITEC, Hirose Electric, Intel, Kontron, nVent, Schroff, Samtec, Sealevel Systems and TEWS TECHNOLOGIES. Further vendors are invited to join the committee to actively develop the new modular Box PC open standard.

For more information, visit the PICMG website: https://www.picmg.org/modblox7/

 

January 27, 2022

PICMG Releases brand new COM-HPC® Carrier Board Design Guide

Industry NewsJess IsquithNews

The design guide supplements the COM-HPC specification for high performance compute modules 

Wakefield, MA., 2022 – PICMG, a leading consortium for developing open embedded computing specifications, announces that the COM-HPC® Carrier Board Design Guide is released and freely available on the PICMG website. The 160-page document provides electronics engineers and PCB layout engineers comprehensive information for designing custom system carrier boards for COM-HPC modules. COM-HPC – short for computer-on-module (COM) – high performance computing (HPC) – is a brand new open Computer-on-Module form factor standard that targets extremely high I/O and computer performance levels from high end clients up to the entry server class and even beyond. Standard COM-HPC modules plug into a carrier or baseboard that is typically customized to the application. OEM benefits are fast and cost effective layout with high design security for application specific embedded and edge computing boards on the basis of open standards.

Especially helpful is the detailed discussion of the challenging module to carrier board Ethernet KR and KR4 backplane signaling. To save pins on COM-HPC modules, the sideband signals for the 10G / 25G / 40G / 100G Ethernet KR interfaces are serialized and must then be deserialized on the carrier board. The design guide provides instructions for this in a series of diagrams.

Additionally, the guide provides enhanced schematics and block diagrams for all provided interfaces such as Serial ATA, PCI Express up to Gen 5, USB4, Boot SPI, eSPI, eDP, MIPI-CSI, SoundWire, asynchronous serial port interfaces, I2C/I3C, GPIO, System Management Bus (SMBus), thermal protection and module type detection. PCB design rule summaries further enable engineers to efficiently design fully signal compliant COM-HPC carrier boards. Also, a section has been added to discuss mechanical considerations including heat spreader/module attachment, alternative board stack assemblies and board stiffeners for carrier boards. Information about all COM-HPC interfaces and a list of useful books to facilitate carrier board designs complete PICMG’s COM-HPC Carrier Board Design Guide.

Electronic design engineers and printed circuit board developers shall note that while the design guide contains additional detailed information it does not replace the PICMG COM-HPC specification. For complete guidelines on the design of COM-HPC compliant carrier boards and systems, it is necessary to refer to the full specification – the design guide is not intended to be the only source for any design decisions. Besides consulting the latest COM-HPC specification, it is also strongly recommended to use the module vendors’ product manuals as a reference. The design guide and base specification are accompanied by a Platform Management Interface Specification, and the COM‑HPC EEEP. The existing Embedded API (eAPI) specification also applies to COM-HPC.

The COM-HPC specification and the COM-HPC Carrier Board Design Guide are available for download on the PICMG website at picmg.org/openstandards/com-hpc/. A preview document is also available, as well as additional resources to learn more about the specification.

Christian Eder, chairman of the COM-HPC committee, said, “This comprehensive document will further accelerate the fast start of the COM-HPC standard. While the specification documents in themselves are already of great use for developers, the detailed Carrier Board Design Guide helps to avoid design problems, especially when handling high-speed signals, such as PCIe Gen 5 and USB4. I expect to see further time-to-market improvements for COM-HPC-based solutions.”

PICMG thanks all members of the PICMG COM-HPC committee who have worked on these documents. Special thanks go to Christian Eder, Stefan Milnor and Dylan Lang. Christian Eder, marketing director at congatec, acted as the chairman of the COM-HPC committee. He was previously a draft editor of the current COM Express standard. Stefan Milnor from Kontron and Dylan Lang from Samtec supported Christian Eder in their respective functions as editor and secretary of the PICMG COM-HPC committee.

October 6, 2021

PICMG Ratifies IoT.1 Firmware Specification for Smart IoT connected Sensors and Effecters

Industry NewsNewsPICMG

PICMG, a leading consortium for the development of open embedded computing specifications, announces the ratification of IoT.1 specification defining a communication standard between sensors / effecters and local IoT controllers such as micro Sensor Adapter Modules (microSAM) already specified by PICMGs IoT.0 specification.

The IoT.1 specification defines a firmware interface and low-level data model that provides for vendor-independent configuration of smart sensors and effecters, as well as plug and play interoperability with higher levels of the installation. IIoT.1 supports both sensing and profiled motion control required by most emerging Industry 4.0 applications.

The IoT.1 specification is the first work product from PICMG based on collaboration with the DMTF organization. PICMG’s IoT.1 specification leverages and extends the Platform Level Data Model (PLDM) specification from Distributed Management Task Force (DMTF) in order to address the needs of industrial automation and control. PLDM is a low level messaging system that supports topologies, eventing and discovery and runs over a variety of system level buses such as I2C/SMBus and PCIeVDM (Vendor-Defined Message) over MCTP (Management Component Transport Protocol) as well as RBT (RMII-Based Transport (RMII = Reduced Media Independent Interface)) over NC-SI (Network Controller Sideband Interface).

IoT.1 was developed in order to benefit the industry in four specific ways:

  1. To enable sensor vendors to create smart sensors without having to manufacture the control circuitry and/or software by purchasing these components from PICMG-compliant suppliers
  2. To enable controller suppliers who wish to create smart sensors or smart-sensor components to do so in a way that is interoperable with other suppliers
  3. To enable sensor/effecter integrators to integrate sensors/effecters from multiple vendors with controllers from multiple vendors
  4. To accelerate the uptake of smart-sensor technology through open-specifications and interoperability

When combined with the PICMG sensor-domain network architecture and data model, sensors connected to MicroSAMs (PICMG IoT.0) or other controller modules will seamlessly integrate into the network with plug-and-play interoperability.

“Nothing like this has ever been done before in Industrial IoT – PICMG IoT.1 brings true multi-vendor plug and play interoperability to the sensor/effecter domain with flexible, open-standards based solutions,” said Doug Sandy, CTO of PICMG.

Jessica Isquith, president of PICMG, adds “this specification has the potential to accelerate the shift to better sensor interoperability and encourage a better and wider range of options.”

IoT.1 was developed in collaboration with the following PICMG members: Arroyo Technology, nVent, Triple Ring Technologies, Sandy Systems, PICMG

For more information, please visit PICMG’s website https://www.picmg.org/industrial-iot-overview/. The specification can be purchased and downloaded here: https://www.picmg.org/product/iiot_firmware.